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PACS. 42.70.Qs – Photonic bandgap materials.

PACS. 42.25.Bs – Wave propagation, transmission and absorption.

PACS. 71.15.-m – Methods of electronic structure calculations.

Abstract. – We demonstrate the method of three-dimensional (3D) optical Wannier functions
(WFs) for quantitative description of electromagnetic wave localization and propagation in 3D
photonic band gap (PBG) micro-circuits. Using these localized “light orbitals” we accurately
reconstruct electromagnetic flow in bulk 3D PBG materials, 2D-3D PBG heterostructures and
2D membrane photonic crystals. The localized orbitals provide a more efficient basis than
those used in plane-wave expansions and finite-difference time-domain methods. In 3D photonic
crystal circuits, using twenty or fewer WFs, we accurately recapture electromagnetic phenomena
over a significant spectral bandwidth surrounding the PBG.

Localized basis states for electronic wave functions are widely used in solid-state
physics [1–3]. They provide the foundation for tight-binding model Hamiltonians that describe
a rich variety of electronic properties of materials. The localization of electromagnetic waves
in disordered structures [4] and photonic band gap materials [5,6] has suggested the possibility
of analogous basis states for light. Up to now, the use of optical Wannier functions (WFs) has
focused on idealized two-dimensional (2D) photonic crystals where the electric field vector is
always perpendicular to the plane of periodicity (TM modes) [7, 8]. In this case the localized
basis states reduce to scalar wave functions. In 3D periodic microstructures, the full vector
nature of the electric and magnetic fields becomes essential. Moreover, induced surface charge
and current densities on material interfaces lead to corresponding discontinuities in these vec-
tor fields and their derivatives. As a result of these complications, a demonstration of 3D local-
ized light orbitals for guiding light in photonic band gap (PBG) microchips has been lacking.
In this letter, we demonstrate that with typically fewer than twenty 3D localized light or-

bitals per unit cell, it is possible to precisely recapture electromagnetic effects in bulk 3D PBG
materials [9], 2D-3D heterostructures [10,11], and 2D photonic crystal (PC) membranes [12].
3D optical WFs provide a powerful, and precise computational tool for describing light flow
in large-scale optical circuits, in which plane-wave expansion (PWE) [13] and finite-difference
time-domain (FDTD) methods [14] become prohibitively cumbersome. The 3D optical WF
method achieves computational efficiency by accurately mapping electromagnetic effects in
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Fig. 1 – Absolute values of the 1st and 7th MLWFs of magnetic fields in a silicon 3D PBG woodpile
structure. The rod width is 0.25a and the rod height is 0.3a, where a is the lattice periodicity in the
xy plane. Upper and lower figures of each MLWF indicate the distributions in the yz and xz planes,
respectively.

the PBG spectral range to an effective one-dimensional tight-binding Hamiltonian. We derive
the modification in 3D localized vector orbitals required to treat electric-field discontinuities
resulting from modified surface polarization charges near defects in PCs.
Consider a bulk periodic 3D PBG structure, with the magnetic-field Bloch functions,

H
(0)
nk (r), band index n and Bloch wave vector k. We construct maximally localized WFs (ML-

WFs), from linear combinations of Bloch functions of the formHnk(r) =
∑N

m=1 U
(k)
mnH

(0)
mk(r),

where U
(k)
mn is an arbitary unitary matrix defined for each k point, and N is the number of

photonic bands. A general (unoptimized) WF of the magnetic field centered at lattice vector
R, is defined as W

(H)
nR (r) = 1

Nk

∑
k e−ik·RHnk(r), where the k summation spans the first

Brillouin zone (BZ) and Nk is the number of discrete points in the first BZ. When the WFs
of the magnetic fields are chosen purely real, the corresponding electric-field WFs W

(E)
nR (r),

obtained from Maxwell’s equation are purely imaginary.
A variety of different localized light orbitals can be constructed depending on the choice

of U
(k)
mn. Following the analogy with electronics [2, 3], MLWFs of the magnetic field are con-

structed by finding the unitary transformation U
(k)
mn that minimizes the spatial spread of the

localized orbital:

Ω =
N∑

n=1

[〈
W

(H)
n0 |r2|W (H)

n0

〉
−

(〈
W

(H)
n0 |r|W (H)

n0

〉)2
]

. (1)

The spread functional is minimized using an iterative method described in the context of
electronics [2, 3] using initial trial WFs that exhibit symmetries of the corresponding Bloch
modes at k = 0 and that are centered at various high-symmetry points of the unit cell. This
leads to the most efficient basis. For example in the silicon woodpile of fig. 1, the initial
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trial WFs are the k = 0 Bloch modes, modulated by tightly localized Gaussian functions
exp[−(x−x(n))2/σ2

x] exp[−(y−y(n))2/σ2
y] exp[−(z−z(n))2/σ2

z ], with σx = σy = 0.3a, σz = 0.8c,
where c = 1.2a, and the center points (x(n), y(n), z(n)) for the first 12 functions chosen from
the set of (0, 0, c/2), (0, 0, 0), (0, 0, 0), (0, 0, 0), (0.5a, 0.5a, 0), (0.5a, 0.5a, 0), (0, 0, 0), (0, 0, 0),
(0.5a, 0, 0), (0, 0.5a, 0), (0, 0, 0) and (0, 0, 0).
In the presence of a dielectric defect, δε(r), over and above the periodic dielectric func-

tion εp(r), the electric-field Maxwell wave equation ensuring the absence of free charges,
∇ · {ε(r)E(r)} = 0, where ε(r) = εp(r) + δε(r), must be satisfied. In scalar wave WF the-
ory [2,3,7,8], the electric field near such a defect is expanded in the basis of unperturbed func-
tions W

(E)
nR (r). However, for a general 3D electromagnetic vector field, the modified distribu-

tion of surface polarization charges cannot be represented by WFs constructed to describe the
original surface charge distribution: ∇·{εp(r)W

(E)
nR (r)} = 0. To address this important issue,

we convert (using Maxwell equations) the magnetic-field WFs to electric-field WFs. In order to
represent the induced polarization charge of the defect and enforce the condition that the de-
fect does not introduce any free charge carriers, we write: E(r) =

∑
nR EnRW̃

(E)
nR (r), where

W̃
(E)
nR (r) = W

(E)
nR (r) − ∇φnR(r). Here φnR(r) is a scalar potential satisfying the Poisson

equation for a hypothetical periodic dielectric ε̃(r) ≡ εp(r) + δεp(r), δεp(r) ≡
∑

R δε(r +R):

∇ · {ε̃(r)∇φnR(r)} = ∇ ·
{

δεp(r)W
(E)
nR (r)

}
. (2)

This equation for φnR(r) is solved in k-space, using the known Fourier decompositions of the
other functions. With modified expansion of E(r), it is then straightforward to verify that the
electric field satisfies the divergence condition including defects even though W

(E)
nR (r) obey

the divergence condition for the purely periodic PC. The right side in eq. (2) corresponds
to a polarization charge density generated by δε(r). We refer to W

(E)
nR (r) and W̃

(E)
nR (r)

as the unmodified and modified optical WFs, respectively. By substituting the modified
expansion of E(r) into the electric-field Maxwell’s wave equation, we obtain an N -dimensional
(N ≤ 20) tight-binding matrix representation that accurately describes electromagnetic flow
through waveguides and point-defect modes as well as transmission and reflection of light
within complex 3D PBG circuit paths. In the event that the PC has more than one type
of defect, more than one type of modified electric field WF would be required and matrix
elements between the different types of WFs would be needed. The detailed evaluation of
these 3D WFs and the resulting matrix elements will be presented elsewhere [15].
As a first illustration of the accuracy and efficiency of 3D optical WFs we consider a bulk

silicon woodpile 3D PBG structure [16–18]. The dielectric index of Si is ε = 11.9 and the width
and height of rods are chosen to be d = 0.25a and h = 0.3a, respectively, where a is the distance
between the centers of neighboring rods. Since one unit cell of the woodpile has 4 stacking
layers, the periodicity of stacking layers is c = 4h = 1.2a. We take the simple cubic structure
a × a × c as a unit cell. This structure has a 3D PBG with gap to center frequency ratio of
17.7%. We construct 12 MLWFs of magnetic fields: 4 MLWFs from the first 4 photonic bands
below the 3D PBG, and 8 MLWFs from many crossing (entangled) photonic bands above the
3D PBG. In figs. 1(a) and (b), we show the absolute values of MLWFs of magnetic fields for
the 1st and 7th MLWFs, respectively. Upper and lower figures of each MLWF indicate the
distributions in the yz and xz planes, respectively. The center points of the 1st and 7th ML-
WFs are (0, 0, c/2) and (0, 0, 0), respectively. The symmetry of each of the MLWFs originates
from the symmetry of the corresponding Bloch functions at crystal momentum k = 0. We
have verified that with 12 MLWFs, and the fourth nearest-neighboring matrix elements, it is
possible to accurately recapture the bands below ωa/2πc = 0.48 of the bulk 3D band structure.
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Fig. 2 – Guided modes in the silicon woodpile of fig. 1 in the case of removing (a) one rod and
(b) rod segments in the stacking direction. The inset shows a top view of the periodically removed
rod segments of length l = 0.5a. The solid line, solid and open circles indicate the PWE, modified
and unmodified optical WF methods, respectively. Shaded regions indicate the projected photonic
band structures.

As a second illustration, we consider two types of waveguides in the 3D woodpile. One
consists of removing a single dielectric rod [19, 20]. Another consists of removing a zig-zag
pattern of vertically stacked rod segments (vertical waveguide) [21,22]. Figure 2(a) shows the
guided modes in the case of removing one rod. Clearly, the defect polarization charge contained
in the modified Wannier orbitals W̃

(E)
nR (r), plays a significant role in obtaining agreement

between the PWE method (solid line) with 4375 plane waves (in a 1×4×4 supercell) and the
MLWF method (solid circles) with 12 localized light orbitals. For ωa/2πc > 0.42, the modified
MLWF (N = 12) method overestimates the guided mode frequency. Higher accuracy in this
spectral range requires the inclusion of more MLWFs above the 3D PBG [15]. Figure 2(b)
describes a single-mode vertical waveguide. The inset shows a top view of the periodically
removed rod segments of length l = 0.5a. This architecture has been shown [21,22] to provide
high-bandwidth, lossless, interconnection between 2D microchip layers embedded in the 3D
woodpile. In fig. 2(b), the modified optical WF can recapture the guided mode precisely.
In both cases, the modified optical WF method (solid circles) improves accuracies greatly,
compared to the unmodified optical WF (open circles). The computational time required
to obtain the guided mode in fig. 2 by modified MLWF is over a factor of 100 less than
that required in the PWE supercell. This suggests the scalability of the MLWF method to
large-scale optical circuits in a 3D PBG microchip [21].
Another important class of 3D microstructures involve guiding in a 2D planar circuit (xy

plane). In 2D membrane PCs [12], confinement in the z-direction occurs through total internal
reflection. In 2D-3D PBG heterostructures [10,11], confinement of light to an intercalated 2D
PC micro-chip layer occurs by virtue of the 3D PBG cladding material above and below the
planar defect layer. In both cases, periodic boundary conditions are imposed in the z-direction
based on the supercell technique. A WF of the magnetic field, centered at lattice vector R||,
is then defined as W

(H)
nR||(r||, z) = 1

Nk||

∑
k|| e−ik||·R||Hnk||(r||, z), where || indicates the 2D

coordinate, and the summation spans the 2D BZ of the planar microchip. W
(H)
nR||(r||, z) is

localized only in the 2D xy plane, and has a periodicity in the z-direction, W
(H)
nR||(r||, z) =

W
(H)
nR||(r||, z + L), where L is the vertical length of the supercell.
For concreteness, we consider the 2D-3D PBG heterostructure composed of inverse [001]-

diamond:5 square spiral structures [23, 24] inserted with a 2D micro-chip layer with circular
rods [10, 11]. The inverse square spiral structure is made from an air coil with a single loop.
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(a) (b)

Fig. 3 – (a) Single guided mode in the case of removing one line of rods in a 2D square lattice
micro-chip layer intercalated within an inverse square spiral PBG material made of silicon (see text
for structural parameters). The solid line, solid and open circles indicate the PWE, modified and
unmodified optical WF methods, respectively. Shaded regions indicate the projected photonic band
structures. (b) Transmission and reflection spectra in a 90◦ bent air waveguide. The inset indicates
the 90◦ bent air waveguide. Solid lines and solid circles indicate the FDTD and modified optical WF
methods, respectively.

The dielectric index of a background Si is ε = 11.9. The [001]-diamond:5 has [L, c, r] =
[1.5, 1.7, 0.33]a, where L, c, r and a are the transverse arm length, the vertical period, the
radius of coated coils and the lattice constant, respectively. The radius of rods in the 2D
micro-chip layer is rd = 0.17a, and the thickness of the 2D micro-chip layer is t = 0.5a. In
the calculation of the 2D-3D PBG heterostructure, we take 4 unit cells of 3D PBG cladding
material (2 above and 2 below) in the z-direction. The overall length of a supercell is L =
4c + t = 7.3a. With this choice of supercell, there are 16 photonic bands below the PBG,
and many crossing (entangled) photonic bands above the PBG. We construct 18 MLWFs:
16 MLWFs from bands below the PBG and 2 MLWFs from above the PBG. We consider a
guided mode in the case of removing one line of rods in the 2D micro-chip layer. Figure 3(a)
shows the single guided mode. The solid line, solid and open circles and shaded regions are
the same as those in fig. 2. As shown in fig. 3(a), the solid circles become close to the solid
line, unlike the open circles.
In the 2D-3D PBG heterostructure, we calculate the transmission and reflection spectra

in a 90◦ bent air waveguide in the 2D micro-chip layer. Figure 3(b) shows them in the 90◦

bent waveguide in the frequency range of 0.34 ≤ ωa/2πc ≤ 0.368. The inset indicates the
90◦ bent air waveguide. Solid lines and solid circles indicate the FDTD and modified optical
WF methods, respectively. The solid lines and the solid circles are the same. In the FDTD
method, the resolution is 10 grid points per lattice constant, corresponding to 1000 basis
functions (delta functions) per unit cell.
In 2D membrane PCs, we consider the triangular-lattice PC composed of circular air holes

in a 2D GaAs slab with an air background. The dielectric index of GaAs is ε = 11.56 and
the radius of air holes is R/a = 0.29, where a is the lattice constant. The thickness of the
2D membrane is t = 0.6a. The overall length of a supercell with the 2D membrane and
air cladding is L = 4a. Only light that satisfies the condition of total internal reflections is
confined strictly to propagate within the 2D membrane PCs. The region of frequencies and
wave vectors in which light leaks into the external air background is called the light cone. This
2D membrane PC has a large in-plane PBG in the even mode of Hz(r||, z) = Hz(r||,−z).
We construct 12 MLWFs. In figs. 4(a) and (b), the absolute values of the magnetic field

for the 1st and 7th MLWFs are shown. Upper and lower figures of each MLWF indicate
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Fig. 4 – Absolute values of 1st and 7th MLWFs of magnetic fields in 0.6a thick 2D membrane PC
consisting of triangular lattice of air holes of radius 0.29a in a dielectric background of 11.56. Upper
and lower figures of each MLWF indicate the distributions at z = 0 and at certain y described by
dashed lines in the upper figures, respectively.

the distributions at z = 0 and at certain y described by dashed lines in the upper figures,
respectively. The 2D membrane PC is confined to the slab region |z| < 0.3a.
We consider guided modes in the PC membrane for the case of missing line of air holes.

Figures 5(a) and (b) show the guided modes in the unmodified and modified optical WF
methods, respectively. Solid lines and light shaded regions are waveguide modes (PWE) and
2D PC bands, respectively. Dark shaded regions indicate the light cone. Solid circles indicate
the optical WF method. In fig. 5(a) the solid lines and the solid circles (unmodified WFs)
do not coincide at all. In fig. 5(b), on the other hand, the solid lines and the solid circles
(modified WFs) converge.
In conclusion, we have demonstrated the efficacy of 3D optical WF method to a broad

variety of 3D periodic dielectric microstructures with planar, line, and point defects. The
key insight in efficiently obtaining a precise description of electromagnetic flow in these struc-

(a) (b)

Fig. 5 – Guided modes for membrane PC of fig. 4 in the case of missing line of air holes in the even
mode of Hz(r||, z) = Hz(r||,−z): (a) unmodified and (b) modified optical WF methods. The solid
line and solid circles indicate the PWE and optical WF methods, respectively. Light shaded regions
indicate the projected photonic band structures. Dark shaded regions indicate the light cone.
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tures is the modification of MLWFs to accommodate the polarization charge densities created
by defects. This creates discontinuities in the electromagnetic field vectors, not previously
encountered in scalar wave calculations [2, 3, 7, 8]. Using less than twenty modified optical
WFs and two orders of magnitude less computational time, we obtain high accuracies for
guided modes, compared to the PWE supercell and FDTD methods. These results suggest
that 3D localized light orbitals provide a novel and reliable method for describing realistic
electromagnetic effects in 3D PBG microchips, with scalability to very large optical circuits.
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